Definition 4.3.1. Matrix over \(\Comps\).
Consider a set
\begin{equation*}
\set{\vec{A}_c:c\in\set{0,1,\dotsc,n-1}}\subset\CV{m}\text{.}
\end{equation*}
We denote
\begin{equation*}
A = \left[\vec{A}_0|\vec{A}_1|\cdots|\vec{A}_{n-1}\right]
\end{equation*}
to be the \(m\times n\) matrix whose cth column is the vector \(\vec{A}_c\text{,}\) for \(c\in\set{0,1,\dotsc,n-1}\text{.}\) We extend our bracket notation from vectors as follows:
\begin{equation*}
\entry{A}{r,c} = \entry{\vec{A}_c}{r}\text{.}
\end{equation*}
To remove the bracket notation, if we define \(a_{r,c}=\entry{\vec{A}_c}{r}\in\Comps\) then
\begin{equation*}
A = \begin{bmatrix}
a_{0,0} \amp a_{0,1} \amp a_{0,2} \amp \cdots \amp a_{0,n-1} \\
a_{1,0} \amp a_{1,1} \amp a_{1,2} \amp \cdots \amp a_{1,n-1} \\
\vdots \amp \vdots \amp \vdots \amp \ddots \amp \vdots \\
a_{m-1,0} \amp a_{m-1,1} \amp a_{m-1,2} \amp \cdots \amp a_{m-1,n-1}
\end{bmatrix}\text{.}
\end{equation*}
For a matrix \(A\in\Mats{m,n}\) we define the row dimension of \(A\) to be \(m\) and the column dimension of \(A\) to be \(n\text{.}\)